炉料中加入较多的废钢,采用优质铸造焦,以得到出炉温度大于1500℃和高碳当量的铁水,用高效孕育剂强化孕育从而得到高强度灰铸铁。
过去生产孕育铸铁依靠加入较多废钢,降低碳量来提高强度,但这种方法工艺性能不好,白口倾向大,尤其是对薄壁铸件(最小壁厚3~10mm)。近代高强度孕育铸铁不用这种方法,靠高效孕育剂来强化孕育,提高性能。一般的方法是:碳当量在3.9~4.1%左右,温度1480℃左右,要求铁水氧化少,采用Si-Ca、Cr-Si-Ca、Re-Ca-Ba、Si-Ca、Si-Fe复合、稀土复合等高效孕育剂,进行孕处理。例如某厂5吨冲天炉,利用铸造焦,炉料中加入40%以上废钢,总焦比为7时,铁水温1520℃~1540℃,炉渣中氧化铁含量低(1.8~3.0%)。经特种孕育剂孕育处理,当碳当量为4.28%时,试棒抗拉强度可达250MPa,相对强度RG=1.28,HB229,珠光体含量大于98%。又如某单位通过提高铁水过热温度,然后采用Re-Ca-Ba孕育剂对铁水进行孕育处理,烧注一批缸盖铸件,当碳当量为3.9~4.05%时,抗拉强度285~304MPa,相对强度RG=1.1~1.21,石墨形态好,加工后水压试验没发现缩松和漏水现象。
所谓合成铸铁工艺,就是用感应电炉熔炼,炉料中用50%以上的废钢,其余为回炉铁和铁屑,经增碳处理得到的铁液。
这种方法的优点是:(1)炉科采用大量废钢,不用生铁,降低了铸铁成本;(2)可获得含磷量低的铁水,减少磷量对缸体、缸盖等薄壁高强度灰铁缩松和渗漏缺陷的影响;(3)可避免生铁遗传性影响,铸铁石墨形态好,珠光体含量高,机械性能好,在同样当量时强度可比冲天炉铸铁提高1~2个牌号。
(1)采用合成铸铁熔炼工艺浇注的缸体机械性能高,当碳当量为4.0%时,抗拉强度大于250MPa,比冲天炉熔炼提高一个牌号;
(2)铁水断面敏感性小,缸体不同厚度断面及阶梯试块断面硬度分布均匀;(3)铸铁含磷量低,含杂质少,克服铸件渗漏缺陷;(4)成本低;(5)熔炼工艺简单易行,容易撑握。
调整原铁水的化学成份使其达到较高碳当量,在炉内(或包内)加入少量铬、铜、钼等合金元素,获得高温低合金化铁水,再经孕育处理,得到石墨细小、珠光体含量高、片间距小的组织,从而获得高强度铸铁。
用这种方法生产高强度灰铸铁,国外用得较广泛,效果较为稳定,合金元素多是Cu,Cr、Mo、Ni等。其最大优点是可使缸体、缸盖薄壁部分的基体组织得到95%以上珠光体,硬度差小。某些单位用0.3~0.7%Cr,瞬时孕育,控制铬/硅比值,解决了缸体、缸盖的生产问题。
通过调整化学成份,特别是改变硅/碳比值,使Si/C在0.5~0.9,再加上适当的孕育和合金化,能够得到拥有非常良好综合性能的高强度灰铸铁件。
(1)在相同碳当量下,Si/C比值高,抗拉强度可提高30~60MPa,相对强度高,相对硬度低,弹性性能好;
(2)在相同碳当量下,Si/C比值增加,残余应力有除低趋势,应力倾向也较小;
(3)提高Si/C比值,白口倾向小,断面敏感性小,而对铁水流动性,线收缩率无影响。
调整锰、硅含量,使含Mn量比含Si量高0.2~1.3%以上,得到另一种高强度低应力铸铁。
灰铸铁含Mn在1.5~3.0%范围内,提高含Mn量,尤其是当Mn量大于Si量后,能显著细化共晶团,易于获得D、E型石墨和细珠光体基体。另外,控制灰铸铁中Mn、Si差值和Mn的绝对值,使Mn、Si差值在0~0.5%,Mn大于2%,还可以在灰铸铁中得到不一样的硬化相。因此,控制Mn、、Si差值和Mn绝对值,就能获得机械性能高,硬度均匀,耐压致密性好和耐磨性能好的高强度灰铸铁。这种高锰灰铸件在郑州纺织机械厂以及机床、缸套、液压件三个行业部分厂中生产,取得较好的效果。Mn=1.7S+0.3% (为保证硫完全被锰结合)。
高强度与收缩一直是一对矛盾,生产高强度的铸件,收缩倾向大,收缩问题若无法很好解决,应付产生大量的收缩废品缺陷。
解决材料的收缩问题,总的原则是要有较高的碳硅当量。高碳硅当量加合金化的工艺比低碳硅当量少加合金的工艺收缩倾向小,因此,应当在选择高碳硅量前提下,开发提高性能的新技术减少收缩具体的措施可以从以下方面考虑:
增碳技术的应用是解决铁液收缩的关键技术。由于铁液凝固过程中的石墨析出产生石墨化膨胀作用,良好的石墨化会减少铁液的收缩倾向,因此,增碳技术是最好的工艺。由于加入增碳剂提高了铁液的石墨化能力,因此,采用全废钢熔炼加增碳剂的工艺,铁液的收缩倾向反而更小。
这是很重要的一个观念转变,传统的观念是认为多加废钢会增大铁液的收缩倾向,这样我们就容易走入一个误区,不愿意多用废钢,而喜欢多用一些生铁。多用生铁的缺点是:
生铁中有许多粗大的过共晶石墨,这种粗大的石墨具有遗传性,如果低温熔炼,粗大的石墨难以消除,粗大的石墨从液态遗传到了固态,使凝固过程中本来由于石墨析出应该产生的膨胀作用削弱,因此使铁液凝固过程中的收缩倾向增大,粗大的石墨又必然降低了材料的性能。因此,与用废钢增碳工艺相比,大量用生铁的缺点就是:①强度性能低。
同样条件下,比废钢增碳工艺收缩大。对于电炉熔炼,增碳技术的核心是使用高品质的增碳剂。
采用废钢增碳工艺,增碳剂就成为增碳工艺中最重要的环节。增碳剂质量的好坏决定了铁液质量的好坏,增碳工艺能否获得好的石墨化效果,减少铁液收缩,主要根据增碳剂:①增碳剂一定要选用经过高温石墨化处理的增碳剂。
只有经过高温石墨化处理,碳原子才能从原来的无序排列变成片状排列,片状石墨才能成为石墨形核的最好核心,促进石墨化。
高温熔炼是最关键的技术指标,高温熔炼可以有效消除生铁粗大石墨的遗传性。高温熔炼能大大的提升渗碳率,减少配料中的生铁加入量。以渗碳方式获得的碳活性好,要比多加生铁带来的碳有更好的石墨化作用,反映在铸件上,就是石墨的形态更好,分布更均匀。石墨的形态好,就会提高材料的性能,包括切削性能,而石墨化效果好,就能减少铁液的收缩倾向。
大量的孕育是不可取的,这会增大收缩倾向。孕育是为增加结晶核心的数量,促进石墨化,少量的孕育(0.2%~0.4%)就能够达到这个目的。从工艺控制来说,孕育量应该相应稳定,不能有过大的变化。这就要求原铁液的硅量也要相应稳定。提高原铁液的硅量,既能够大大减少白口和收缩倾向,又能发挥硅固溶强化基体的作用,性能反而不降低。目前比较科学的做法是提高灰铸铁原铁液的含硅量,孕育量控制在0.3%左右,这样做才能够发挥硅的固溶强化作用,对提高强度有利,也对减少铸件收缩有利。
铬能有效地提高灰铸铁的性能,随着加入量的增加,性能会一直提高。铬的白口倾向比较大,这是大家最顾忌的问题。加入量太大,会出现碳化物。至于铬量的上限怎么来控制,不同的加铬工艺,上限不一样,如果铬加入到原铁液中,其上限别超过0.35%,提高原铁液中的铬量会使铁液白口倾向和收缩倾向加大,非常有害。另一种加铬的工艺不是提高原铁液铬,而是将铬加入到铁液包中,用冲入法冲入,这种工艺会大幅度减少铁液的白口和收缩倾向,同前一种工艺相比,同样的铬量,白口和收缩倾向会减少一半以上,这种加铬方式,铬的上限能控制到0.45%。
钼的特性与铬非常相似,不再作具体描述。由于钼的价格昂贵,加钼会大幅度增加成本。因此,应尽可能少加钼,多加一些铬。用冲入法加铬、加钼是减少合金化收缩的有效措施。
要控制浇注温度在合理的范围内是很重要的,浇注温度如果高于工艺规定的合理的温度20~30℃,收缩倾向就会大幅度的增加。生产中要注意这样一种现象,没有自动保持温度的功能的电炉,可能会使铁液温度上升,第一包铁液的浇注温度会低一些,随后温度会慢慢的高,如果不加以控制,就非常有可能产生收缩废品。生产中第一包铁液要烫包,烫好的包再用,而且第一包铁液浇注温度要控制在下限,不要在上限,防止温度不断升高。电炉熔炼控制好浇注温度,是防止铸件产生收缩废品的关键措施。
为了降低铁液氧化,冲天炉熔炼就要实现快速熔炼。现在国外的先进电炉熔炼技术能做到加入的铁料在几分钟内快速熔化,快速缩短了铁料在高温氧化阶段的时间,氧化倾向大幅度降低,同时由于电炉增碳技术的应用,使铁液的氧化逐步降低,所以电炉熔炼也可以生产出低氧化、低收缩的铁液。只要严控好浇注温度,用电炉熔炼生产复杂的缸体、缸盖铸件也很有优势。